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Abstract

The graph structure is a commonly used data storage mode, and it turns out that

the low-dimensional embedded representation of nodes in the graph is extremely

useful in various typical tasks, such as node classification, link prediction, etc.

However, most of the existing approaches start from the binary relationship

(i.e., edges) in the graph and have not leveraged higher order local structure

(i.e., motifs) of the graph. Here, we propose mGCMN – a novel framework

which utilizes node feature information and the higher order local structure of

the graph to effectively generate node embeddings for previously unseen data.

Through research we have found that different types of networks have different

key motifs. And the advantages of our method over the baseline methods have

been demonstrated in a large number of experiments on citation network and

social network datasets. At the same time, a positive correlation between in-

crease of the classification accuracy and the clustering coefficient is revealed. It

is believed that using high order structural information can truly manifest the

potential of the network, which will greatly improve the learning efficiency of the

graph neural network and promote a brand-new learning mode establishment.
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1. Introduction

Graph structure is a common and flexible data structure that can represent

data in a variety of fields, including social networks [1], biological protein-protein

networks [2], knowledge network [3], etc. People can use graphs to efficiently

store and access relational knowledge about interactive entities. For example,

in a social network, a node can represent a person, and nodes are connected

with edges indicating that people know each other. In recent years, due to the

rapidly increase in the amount of data, the formed graphs have become increas-

ingly complicated, which makes it difficult to extract valid information from

complicated organizations. Therefore, it is important to process complex raw

data in advance and convert them into a form that can be effectively developed

for gaining good results.

High-dimensional complex data are expected to be represented as a simple,

easy-to-process low-dimensional representation. However, traditional manual

feature extraction requires a great deal of manpower and relies on highly spe-

cialized knowledge. Thus, representation learning has played a key role in graph

machine learning. Representation learning is a technical method to learn the

characteristics of data, transforming raw data into a form that can be effectively

developed using machine learning. It avoids the trouble of manually extracting

features and allows the computer to learn how to extract features while learning

to use features, namely, learning how to learn. Representation learning can be

regarded as a type of preprocessing, does not directly obtain the results but

an effective representation for producing desirable results. In other words, the

choice of representation usually depends on subsequent learning tasks, i.e., a

good representation should make learning of downstream tasks easier.

The main topic of representation learning on graph is to deal with the re-

lational mode or connection pattern. For this learning, effective encoding of
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the basic structures such as nodes, edges, subgraphs will lead to quantitative

understanding of the data knowledge, and help promote the learning efficiency

combined with the downstream tasks. Recently, many valuable results have

been obtained. Laplacian feature map is one of the earliest and most famous

representation learning methods whose loss function weights pairs of nodes ac-

cording to their proximity in the graph [4], which is a direct encoding method.

DeepWalk [5] and node2vec [6] also rely on direct encoding. However, instead of

attempting to decode fixed deterministic distance metrics, these methods gain

the representation of the target objects through the random walk on the graph,

which makes the graph proximity measure more flexible and has led to superior

performance in a number of settings. However, these direct encoding methods

have disadvantages such as too many parameters and insufficient use of infor-

mation in the graph (such as node characteristics). Therefore, the graph neural

network (GNN) framework which obtains the representation of the target ob-

ject through deep learning is developed [7]. Inspired by the parameter sharing

operation in the convolutional neural network, the graph convolution network

(GCN) is developed (Kipf et al. [8]), so that the convolution operation can be

applied to the irregular graph data (relative to the regular image data). How-

ever, all the above methods start from the binary relationship (i.e., edge) in the

graph, and can not leverage the higher-order local structure (i.e., motifs) in the

graph, which may help to explore more effective information in more complex

graph structures.

Present work. This paper develops a new framework that combines motif with

traditional representation learning. We first analyze the important statistics in

the graph; then the graph convolutional neural network is chosen as the basic

model and a new framework is developed. This new framework is named graph

convolutional multilayer networks based on motifs (mGCMN), which can im-

prove the accuracy of the task while spending a little more time. It is believed

that combining motifs is in essence to redefine the node neighbors and redis-

tribute the weight of the graph network. And we apply a variety of motifs and

conduct a large number of experiments, all of which obtain better test results
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than the baselines. At the same time, the relationship between classification

accuracy and clustering coefficient is revealed. And the main contributions can

be summed up as following:

• We propose mGCMN, an efficient framework using higher-order local

structure of the graph instead of just the edges for representation learning

in networks.

• We prove that our method has the same time complexity as the current

most popular method (GCN) in the training phase.

• We apply a variety of motifs and conduct numerous experiments on several

real-world datasets. And the relationship between classification accuracy

and clustering coefficient is revealed.

The rest of this article is organized as follows. In Section 2, related past work

is outlined and in Section 3, the mGCMN which is our representation learning

method, is introduced. Our experiments will be introduced in Section 4 and the

results are given in Section 5. In Section 6, the conclusion and future work are

discussed.

2. Related Work

Our method is related to recent advances in the concepts and applications

of motif, as well as previous representation learning methods such as semi-

supervised learning methods that apply convolutional neural networks to graph

structure data. So this section will focus on the previous work closely related

to mGCMN.

2.1. The Concept and Application of Motif

Motif is the interconnection pattern that occurs in complex networks, whose

number is significantly higher than that in random networks under given con-
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Figure 1: A.Examples of 3-order network structures (3-motifs). B.The four motifs. (1) feed-

forward loop. (2) bi-fan. (3) three chain. (4) bi-parallel.

ditions. It is generally considered to be the basic building blocks of a complex

network. For example, Fig.1A shows all the 3-order directed motifs.

Motif is important and previous research has established that it provides a

new perspective on identifying graph types. For example, two transcriptional

regulatory networks (transcriptional regulatory networks are biochemical net-

works responsible for regulating gene expression in cells) correspond to organ-

isms from different fields: eukaryotes (Saccharomyces cerevisiae) and bacteria

(E. coli) [9]. Two transcription networks show the same motifs: a three-node

pattern which is called ”feedforward loop” and a four-node pattern which is

called ”bi-fan”, and general trends in the food web are shown as: a three-node

pattern which is called ”three chain” and a four-node pattern which is called

”bi-parallel” (The four motifs are shown in Fig.1B) [9]. The food web responds

to energy flow, while the gene regulatory network responds to information flow,

which seems to have a significantly different structure from energy flow; on the

other hand, we can capture important structural information (such as geograph-

ic location information, urban hubs, etc.) by selecting the appropriate motifs

[10], which is difficult to capture through the edges.
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2.2. Representation Learning Method

Representation learning is a technical method to learn the characteristics of

data. It converts the original data into a low-dimensional information-rich form

that is convenient for machine learning to develop effectively. From a certain

perspective, it can be regarded as a dimensionality reduction method. Due to

the flexibility of the graph structure, a lot of raw data is stored in the form of

graphs, so the representation learning methods introduced below are all graph

representation learning methods. Generally speaking, it can be divided into

three categories [11]:

2.2.1. Embedding Approaches Based on Factorization

Inspired by classic techniques for dimensionality reduction, early method-

s for learning representations of nodes largely focused on matrix-factorization

approaches. A representative example here is: Laplacian eigenmaps method,

which we can view within the encoder-decoder framework as a direct encoding

approach.4 Following the Laplacian eigenmaps method, there are a large num-

ber of representation learning methods based on inner product, such as Graph

Factorization (GF) [12], GraRep [13] and HOPE [14]. And the main difference

of them is that the basic matrix used is different. In GF method, the original

adjacency matrix of graph is used. And GraRep is based on various powers

of the original adjacency matrix. As for HOPE, more general variants of the

original adjacency matrix are considered.

2.2.2. Embedding Approaches Based on Random Walk

This type of method is also a type of direct coding, where the key innova-

tion is to optimize node embeddings. Instead of using deterministic graphical

proximity measures, this kind of method uses flexible, random graphical prox-

imity measures (essentially, it is the frequency of node pairs appearing in the

same random walks), which performs well in many scenarios. The representa-

tive methods are node2vec [6], DeepWalk [5] and HARP [15], etc. Node2vec
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creatively uses two hyperparameters (backtracking parameter p and forward

parameter q) to control random walk, making it a compromise between depth-

first random walk and breadth-first random walk. And DeepWalk is another

famous approach based on random walks, which uses truncated random walk

to convert the non-linear graph structure into multiple linear sequences of n-

odes. As for HARP, a process called graph coarsening is used in this method,

which merges closely related nodes in graph G into ”super nodes” , and then

DeepWalk, node2vec or other methods is run on the formed new graph.

2.2.3. Embedding Approaches Based on Neural Network

The above two types of node embedding methods are direct encoding meth-

ods. However, these direct encoding methods independently generate a repre-

sentation vector for each node trained, which lead to many disadvantages: i) no

shared parameters between nodes; ii) high computational complexity; iii) fail-

ing to leverage node attributes during encoding; iv) only for known nodes. This

leads to the emergence of a neural network-based node representation method,

which overcomes the above disadvantages and achieves excellent results in many

aspects. The representative methods are Deep Neural Graph Representations

[16] (DNGR), Structural Deep Network Embeddings [17] (SDNE), Graph Neu-

ral Network (GNN) and Graph Convolutional Network (GCN), etc. The D-

NGR and SDNE methods reduce the computational complexity, which use deep

learning methods (autoencoder [18]) to compress the relevant information of

the node’s local neighbors. And GNN is an original graph neural network which

implements a function that maps the graph and one of its nodes to Euclidean

space. As for GCN, it is a very well-known method first proposed by Kipf et

al. [8]. In this method, the convolution operation (representing any node as a

function of its neighborhood, like convolutional neural network in the field of

image processing) is cleverly applied to the graph structure. And Nie et al. shed

light on automatically annotating a newly posted question with topic tags that

are predefined and preorganized into a directed acyclic graph by presenting an

end-to-end deep interactive embedding model [19].
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Figure 2: mGCMN Model. Hv represents the middle embedded representation and Zv repre-

sents the final embedded representation.

3. Method

The key idea of our method is that we believe that combining motifs is in

essence to redefine the node neighbors and redistribute the weight of the graph

network. And we regard the graph convolution network combined with motif as

a pre-processing tool. In general, we combine the custom motif matrix M with

the graph convolution network to process the nodes’ local neighborhood feature

information (for example, the nodes’ text attributes and statistical properties),

and pass the result into the fully connected network to get the final classification

result. The process is shown in Fig.2.

First, the custom motif matrix converts the original edge adjacency graph

into a motif adjacency graph (”Motif transform”, equivalent to redefining the

weight); then, the graph convolution operation is performed on the motif adja-

cency graph to obtain the middle embedded representation of each point; finally,

the intermediate embedded representation is input to a fully connected network

for further processing to obtain the final embedded representation.
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Next, we first introduce the custom motif matrix M and various motifs in

Section 3.1; then, we describe the mGCMN embedding algorithm to generate

embeddings for nodes in Section 3.2; finally in Section 3.3, we give complexity

analysis of the algorithm and make a proof at the same time.

3.1. Motif Matrix

1

3

4

5 2

7

6

(C)

Before expanding 

the definition

After expanding 

the definition

(A) (B)

Figure 3: Relative position relationships are marked by red nodes in (A) and (B). An example

of triangle motif adjacency matrix is shown in (C), the matrix of original definition is on the

left, and on the right is the matrix after expanding the definition.

We will explain motif matrix in detail in this section. For the convenience of

explanation, some commonly used symbols are agreed on. Formally, let graph

G = (V,E), where V is the set of the nodes in network, and E is the set of the

edges, E ⊆ (V × V ). Given a labeled network with node feature information

G = (V,E,X, Y ), where X ∈ R(N×T ) (N is the number of the nodes in network,

T is the feature dimension) is the feature information matrix and Y ∈ R(N×L)

(L is the feature dimension) is the label information matrix, our goal is to use
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the labels of some of the nodes for training, and generate a vector representation

matrix Z of the nodes.

Then, we give:

Definition 1: Given a graph G = (V,E,X, Y ), a motif M with central node

vM (the node currently being followed) is defined as M = (VM , EM , vM ), where

VM is the node set of M containing vM , and EM ⊆ E satisfies that ∀v, u ∈ VM ,

if (v, u) is in M , then (v, u) ∈ EM .

Definition 2: An instance Su = (VS , ES) of motif M with central node u

on graph G = (V,E,X, Y ) is a subgraph of G, where VS ⊆ V and ES ⊆ E,

satisfying (i) u ∈ VS , and Φ(u) = vM ; (ii) ∀a, b ∈ VS , if (Φ(a),Φ(b)) ∈ EM , then

(a, b) ∈ ES , where Φ : VS → VM is an arbitrary bijection.

After that, we can define the motif matrix. Given a motif M , a motif matrix

AM of M is defined as: aMvu is the number on the vth-row and uth-column of the

motif matrix AM , and it is equal to the number of the times that nodes v and

u appear in the same instances of M . Formally,

aMvu =
∑

ES

I((v, u) ∈ ES), (1)

where I(·) is the indicative function.

The above is the usual definition of motif adjacency matrix, and particularly,

we extend it. When the nodes v and u come to be the same node, we also record

its number of the times that appearing in the same instances of M (similar to

edge-based self-loop). For example, the positional relationship of the motif

”triangle” is like Fig.3 (A), while after expanding the definition, the position

relationship like Fig.3 (B) is also counted.

As a specific example, its triangle motif adjacency matrix is shown in Fig.3

(C). In the middle figure of Fig.3 (C), node 1 and node 2 are both in four

triangle motifs which are triangles ′123′, ′124′, ′125′ and ′126′. Thus in the left

matrix of Fig.3 (C), the number ′4′ is placed in the second column of the first

row of the matrix (symmetrically, the first column of the second row is also

′4′). And before the definition is expanded, the number on the diagonal of the
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matrix is zero (as the left matrix of Fig.3 (C)). After the definition is expanded,

the numbers on the diagonal of the matrix are no longer zero. We see that the

number in the first column of the first row is ′4′ in the right matrix. And this

is because the node 1 is in 4 triangle motifs, which are ′123′, ′124′, ′125′ and

′126′ respectively.

3.2. Embedding Algorithm

For specific algorithm, see: mGCMN embedding algorithm.

Algorithm 1 : mGCMN embedding algorithm.

Input: Motif adjacency matrix AM (M is the corresponding motif); Node fea-

ture matrix X; The number of motif-based GCN layers H1; The number of

Multi-Layer Perceptron (MLP) layers H2;

Output: Representation matrix Z;

1: h0
v = xv, ∀v ∈ V ;

2: for k = 1, ..., H1 do

3: for v ∈ V do

4: hk
v ← f(hk−1

v , hk−1
u ), u ∈ NM (v);

5: end for

6: end for

7: for k = 0, ..., H2 do

8: for v ∈ V do

9: hk+H1

v ← f̃(hk+H1−1
v );

10: end for

11: end for

12: zv = h
(H1+H2)
v , ∀v ∈ V ;

13: return Z (whose column vectors are zv, v ∈ V );

We first obtain a custom motif matrix as defined in Section 3.1. The numbers

of GCN layers based on motif and MLP layers are specified by the users in

advance; The initialization of all nodes is expressed as : h0
v = xv, ∀v ∈ V , in
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line 1; In lines 2-6, we perform a graph convolution operation based on motif,

and in the formula hk
v ← f(hk−1

v , hk−1
u ), u ∈ NM (v), f(·) represents a weighted

nonlinear aggregation function, whose purpose is to reorganize the information

of the target node and its neighbors. Formally,

hk
v = σ(

∑

u∈NM (v)∪{v}

aMvu · h
k−1
u ·Wk), (2)

where hk
v is the hidden representation of node v in the k-th layer; aMvu is the

number on the vth-row and uth-column of the motif matrix AM , indicating the

closeness between nodes v and u; Wk is the parameter matrix to be trained of

layer k; NM (v) is the neighborhood nodes set of node v in the motif matrix AM ;

σ(·) represents for ReLU function.

In lines 7-11, the processing results of the graph convolution operation based

on motif are sent to MLP for further processing, in the formula hk+H1

v ←

f̃(hk+H1−1
v ), f̃(·) represents a non-linear activation unit that further processes

the information of target nodes. Formally, we have

hk+H1

v = σ̃(hk+H1−1
v ·Wk+H1

), (3)

where σ̃(·) represents for ReLU function, except for the last layer (in the last

layer, σ̃(·) represents for Softmax function).

Then, the final representation vector zv of node v is obtained. Finally, the

cross entropy function is used as the loss function to train the parameters of our

model:

loss =
∑

v

(yv · log(zv) + (1− yv) · log(1− zv)), v ∈ trainset, (4)

where yv is the label of the node v.

3.3. Complexity Analysis

Our method is based on GCN. And from the related work of Kipf et al. [8],

we know that the computational complexity of the original GCN based on the
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following formula is O(|E|CHF ), where E is the edge set of the graph:

Z = f(X,A) = softmax
(

Â ReLU
(

ÂXW (0)
)

W (1)
)

. (5)

Here, A is the adjacency matrix and X is the feature matrix. And Â is the

normalized processing matrix of the adjacency matrix A. W (0) ∈ R
C×H is an

input-to-hidden weight matrix and W (1) ∈ R
H×F is a hidden-to-output weight

matrix, where C is the number of input channels, H is the dimension of feature

maps in the hidden layer and F is the dimension of feature maps in the output

layer [8].

Next, we will prove that the computational complexity of our method is also

O(|E|CHF ) while keeping the number of hidden layers unchanged and using

the motif matrix instead of the original adjacency matrix.

Proof. Let D be the maximum degree of the nodes in graph G, N denote the

number of nodes in G, M denote the motif matrix and A denote the original

adjacency matrix.

For the triangle motif, consider the zero element in A with Ai,j = 0, that

is, there is no edge between nodes i and j. So we can know Mi,j = 0 (nodes

i, j are not in the same triangle). So for the triangle motif, the computational

complexity does not change.

For the wedge motif, we consider A2. If A2
i,j = 0, it means that node i can

not reach node j by 2 steps (i.e., node i is not a second-order neighbor of node

j), which means that the nodes i and j are not in the same wedge. So we can

know Mi,j = 0. Then consider the number of non-zero elements in the matrix

A2, which is set to n. According to A2
i, = Ai, ·A (Ai, represents the i-th row of

A), we can know that ni, ≤ di ·D, where ni, represents the number of non-zero

elements in A2
i, and di is the degree of node i. Therefore, the total number n of

non-zero elements in A2 satisfies equation:

n ≤ d1 ·D + d2 ·D + ...+ dN ·D = (d1 + d2 + ...+ dN ) ·D = 2|E|D. (6)

So the number of non-zero elements in M is no more than 2|E|D. Then the

computational complexity is O(2|E|DCHF ) = O(|E|CHF ).
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4. Experiments

In section 4.1, we introduce the datasets used in the experiment, and the

specific settings of the experiment are described in section 4.2.

4.1. Datasets

Table 1: Datasets Statistics.

Datasets Types Nodes Edges Features Classes

Cora Citation 2708 5429 1433 7

Citeseer Citation 3327 4732 3703 6

Pubmed Citation 19717 44338 500 3

107Ego Social 1045 53498 576 9

414Ego Social 159 3386 105 7

1684Ego Social 792 28048 319 16

1912Ego Social 755 60050 480 46

The statistics of the experimental datasets are shown in Table 1. In the cita-

tion network datasets (Citeseer, Cora, and Pubmed), nodes represent documents

and edges represent citation links; In the social network dataset (Ego-Facebook),

nodes represent users and edges represent interactions between users.

Citation Network Datasets: Citeseer, Cora, and Pubmed. The three

citation network datasets contain a sparse feature vector for each document and

a list of reference links between the documents. Citation links are considered

as (undirected) edges and each document has a category label [8].

Social Network Dataset: Ego-Facebook. This dataset consists of ’circles’

(or ’friends lists’) from Facebook (Facebook data was collected from survey par-

ticipants). There are many subsets of the Ego-Facebook dataset. Take ’107Ego’

as an example. The dataset includes node features, edge sets, node category

sets, and self-networks (network with node 107 as the core), where each user
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is considered as a node, the interaction is considered as an (undirected) edge,

and each user has a feature attribute vector and a category label. We choose

the suitable Ego-Facebook subsets for experiments, and after preprocessing, the

data whose information has been lost is removed [20].

4.2. Experimental setup

We first add motif of the general sense to the GCN network, the purpose is to

observe whether the individual motif will work, and if it works, which kind of

motif works better; then the general sense motif is changed to a custom motif,

and connected to the MLP network for further processing (that is, the complete

mGCMN algorithm), and the method is also marked as mGCMN.

In particular, we use triangle motif and wedge motif, because triangle motif

and wedge motif are closely related to the network clustering coefficient. There-

fore, for homogeneous networks (the same kind of nodes are more likely to be

connected), we think that triangle motif and wedge motif will be more helpful to

improve the accuracy of node classification. On the other hand, the complexity

of high-order motifs is very high. At present, we only want to point out that

the introduction of motif structure can improve the efficiency of graph neural

networks. For network data with high-order motif features, it is necessary to

develop a lower complexity approximation algorithm to optimize the learning

of the graph neural network, which will be the focus of our next research. And

this paper selects social network data with obvious characteristics of low-order

motifs (2-order and 3-order) to conduct research. So we choose triangle motif

and wedge motif instead of choosing higher-order motifs or other types of motif.

When we perform experiments on the citation network datasets (Citeseer,

Cora, and Pubmed), the number of GCN network layer and MLP network layers

are set to 2 and 0 respectively for Citeseer and Pubmed (because we found

that in the experiment, for the Citeseer and Pubmed, the classification results

obtained after the two-layer graph convolution layer processing combined with

motif are already good enough, and the further processing by the MLP network
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is not required. In fact, the experimental results with the MLP network added

are equivalent to the results without the addition, so from the perspective of

reducing the parameters, we set the number of MLP network layers to 0.); as for

Cora, the number of GCN network layer and MLP network layers are set to 2

and 1 respectively; when performing experiments on the social network dataset

(Ego-Facebook), the number of GCN network layer is set to 2, and the number

of MLP network layers is set to 1.

Due to the strong social attributes of the data, the network clustering co-

efficient is a very important indicator, so triangle patterns and wedge patterns

which are closely related to it are selected. A large number of experiments are

conducted on all dataset, and finally a mixed matrix of motifs and graph ad-

jacency matrix is choosen, which will get the best results. The mixed matrix

parameter λ is determined by grid search. The details are as follows.

In the mGCMN method: the ratio of edge, triangle motif and wedge motif

is 8: 3: 9 on the Cora dataset; the ratio of edge, triangle motif and wedge motif

is 8: 1: 6 on the Citeseer dataset; the ratio of edge, triangle motif and wedge

motif is 8: 3: 1 on the Pubmed dataset; the ratio of edge and wedge motif is 9:

1 on the Facebook-107Ego dataset; the ratio of edge and triangle motif is 4: 1

on the Facebook-414Ego dataset; the ratio of edge and wedge motif is 1: 1 on

the Facebook-1684Ego dataset; the ratio of edge and wedge motif is 4: 1 on the

Facebook-1912Ego dataset. For convenience, these data are compiled in Table

2:

Table 2: The ratio of edge, triangle motif and wedge motif used on each dataset.

Dataset Edge : Triangle : Wedge Cora 8 : 3 : 9

Citeseer 8 : 1 : 6 Pubmed 8 : 3 : 1

107Ego 9 : 0 : 1 414Ego 4 : 1 : 0

1684Ego 1 : 0 : 1 1912Ego 4 : 0 : 1
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Finally, the prediction vector is used to compare the prediction accuracy of

classification on the test set.

5. Results and Discussion

In this section, we introduce a variety of baseline methods, and show the

comparison of all experimental results as follows:

5.1. Experimental Results on Citation Network Datasets (Citeseer, Cora, Pubmed)

First, we use the citation network datasets (Citeseer, Cora, and Pubmed)

for the experiment, and compare the experimental results with various baseline

methods [8]. The results are shown in Table 3.

Table 3: The results of classification accuracy for various baseline methods and

mGCMN.

Method Cora Citeseer Pubmed

ManiReg 59.5 60.1 70.7

SemiEmb 59.0 60.1 71.1

LP 68.0 45.3 63.0

DeepWalk 67.2 43.2 65.3

ICA 75.1 69.1 73.9

Planetoid 75.7 64.7 77.2

GCN 81.5 70.3 79.0

mGCMN 82.6 72.0 79.6

CC 0.09350 0.14297 0.05380

The table shows the comparative results of our method with the method-

s of label propagation (LP) [21], semi-supervised embedding (SemiEmb) [22],

manifold regularization (ManiReg) [23], iterative classification algorithm (ICA)
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Figure 4: Relationship between (increase of) the classification accuracy and the clustering

coefficient.

[24] and Planetoid [25], and DeepWalk is a method based on random walks, as

stated at the beginning of the article, whose sampling strategy can be seen as

a special case of node2vec with p = 1 and q = 1. As for method named GCN,

which is the first method to achieve convolution on the graph, it is the best per-

forming baseline method, and it is worth mentioning that, on Citation Network

Datasets, the number of graph convolutional layers of GCN is the same as that

of mGCMN (both are 2 layers); and on subsets of Social Network Dataset, the

number of graph convolutional layers of GCN is 3 , and which of mGCMN is

2. In short, the number of graph convolutional layers used by our method does

not exceed that used by GCN method, which also reflects the effectiveness of

the motif matrix (in mGCMN, we use motif matrix instead of the adjacency

matrix, and use MLP as a classifier to further process downstream tasks). And

we can see that our method performs better on every dataset.

One interesting finding is that the global clustering coefficients (CC) of these

three graph networks are 0.09350, 0.14297 and 0.05380, whose ordering is con-

sistent with the order of the increase of our method (compared to GCN). A more

intuitive display is shown in the left figure of Fig.4. In the next experiment, this

phenomenon appears again, and we believe that this illustrates the rationality

of our application of higher-order neighborhood information.

18



5.2. Experimental Results on Social Network Dataset (Ego-Facebook)

Now, we use the social network dataset (Ego-Facebook) for the experiments, and

compare the experimental results with DeepWalk [5], GraRep [13], Node2vec [6],

GCN [8] and GAT (Graph Attention Networks) [26]. The experimental results

are shown in Table 4:

Table 4: The results of classification accuracy for DeepWalk, GCN, and mGCMN.

Method 107Ego 414Ego 1684Ego 1912Ego

DeepWalk (77.5) (79.2) (64.4) (66.5)

GraRep (90.0) (85.4) (76.3) (77.0)

Node2vec (90.0) (91.7) (78.1) (75.0)

GAT (87.5) (93.8) (80.6) (77.0)

GCN 73.1(92.5) 64.2(93.8) 59.9(81.9) 53.8(77.0)

mGCMN 80.1(95.0) 72.4(100) 66.5(88.8) 62.9(84.0)

CC 0.54431 0.67137 0.45752 0.71837

In Table 4, GraRep [13] works by defining a more accurate loss function that

allows non-linear combinations of different local relationship information to be

integrated. And GAT [26] introduces an attention mechanism on the basis of

GCN.

Among methods in Table 4, in order to further compare GCN and mGCM-

N, the average accuracy of 100 runs after the random weight initialization is

reported (hyperparameter settings are shown in section 4.2), and the highest

accuracy in all experiments (in all the hyperparameters searched) is shown in

brackets. And for other baseline methods, the best performance was reported

after the hyperparameters were determined.

As can be seen from Table 4, the experimental results of both parts of our

method are significantly higher than the other baseline. It is worth noting that

the difference between the average accuracy and the best accuracy in 414Ego is
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very large. For this result, we think it is due to the small scale of the 414Ego

network. As can be seen in Table 1, the 414Ego network only contains 159 nodes

and 3386 edges. Therefore, the difference of the initialization parameters has a

greater impact on the experiment, and further causes the experimental results

to fluctuate greatly.

And we again see that the ranking of the global clustering coefficients is

consistent with the ranking of the improvement of our method (compared to

GCN). A more intuitive display is shown in the right figure of Fig.4. We think

this phenomenon may help to search the data which is suitable to process using

our method.

5.3. Parameter Sensitivity Analysis

Here, we conduct a parameter sensitivity analysis for each experiment after the

motifs types are determined, and the results are shown in Fig.5.

(a) (b)

(c) (d)

Figure 5: Line charts of the results varying with the parameters on each dataset.
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In subfigure (a), when the wedge motif ratio is fixed at 0.9, the result varies

little with the triangle motif ratio, and when the triangle motif ratio is fixed

at 0.3, the result varies greatly with the wedge motif ratio. Thus, the wedge

motif is more likely to play an important role in Cora dataset; in subfigure

(b), when the ratios of triangle motif and wedge motif are fixed to 0.1 and

0.6 respectively, the results vary little with the other, and it seems that the

wedge motif is more important since the ratio is higher; subfigure (c) also has

a similar performance as subfigure (b), except the ratios of triangle motif and

wedge motif are fixed to 0.3 and 0.1 respectively. Thus the triangle motif is

more likely to play an important role in Pubmed dataset; as for subfigure (d),

the four subsets of Facebook are portrayed together, and the results of subset

1684ego fluctuate slightly with the change of motif ratio, however in the other

three subsets, the results fluctuate greatly (more than 4%) with the change of

motif ratio, that is, it is more sensitive to parameter changes. And the motifs

for 107ego, 414ego, 1684ego and 1912ego are wedge motif, triangle motif, wedge

motif and wedge motif respectively (as described in section 4.2). In summary,

different motifs play important roles in different datasets. How to quantitatively

use these motifs may be the focus of future work.

6. Conclusion

In this paper, we have designed a new framework combined with motifs −

mGCMN, which can effectively aggregate node information (we think it can

be seen as accomplishing this by defining a new neighborhood structure), and

capture higher-order features through deeper learning. The results have shown

that mGCMN can effectively generate embeddings for nodes of unknown cat-

egory and is always better than the baseline methods. At the same time, the

experiments also reveal the relationship between increase of the classification

accuracy and the clustering coefficient.

There are many extensions and potential improvements to our method, such

as further exploring the relationship between motifs and graph statistics and
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extending mGCMN to handle directed or multi-graph mode. Another interest-

ing direction for future work is to explore how to use the adjacency matrix more

efficiently and flexibly.
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